Using EDR Data to Calculate Non-EDR Equipped Vehicle Speeds

Sergeant Weston Brown
Scottsdale (Arizona) Police Department
Using EDR Data to Calculate the Speed of a Non-EDR vehicle.

Presented by:
Weston Brown
Scottsdale (Arizona) P.D.
Lots and Lots and Lots of Cars

• As of 2018 model year, over 99% of production vehicles are covered with some type of EDR.
What is Δv?

What does the Δv data mean?

- Let’s first understand what the different types of Δv in the EDR mean...
 - Longitudinal Dv – The change in velocity in the longitudinal, or front to back, axis of the vehicle.
What is Δv?

What does the Δv data mean?

- Let’s first understand what the different types of Δv in the EDR mean...
 - Lateral Dv – The change in velocity in the lateral, or side to side, axis of the vehicle.
What is Δv?

What does the Δv data mean?
What is Δv?

What does the Δv data mean?

“Right Hand Rule”
SAE J1733
Sources of Error in Δv

Sources of Error

Δv Error

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Full Scale</th>
<th>Resolution</th>
<th>Accuracy</th>
<th>How Measured</th>
<th>When Updated</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔV</td>
<td>\pm 55.9 mph</td>
<td>0.4 mph</td>
<td>\pm 10%</td>
<td>integrated acceleration</td>
<td>recorded every 10 msec, calculated every 1.25 msec.</td>
</tr>
<tr>
<td>Vehicle speed</td>
<td>158.4 mph</td>
<td>0.6 mph</td>
<td>\pm 4 %</td>
<td>Magnetic pickup</td>
<td>vehicle speed changes by \geq 0.1 mph</td>
</tr>
<tr>
<td>Engine Speed</td>
<td>16383 RPM</td>
<td>1/4 RPM</td>
<td>\pm 1 RPM</td>
<td>Magnetic pickup</td>
<td>RPM changes by \geq 32 RPM.</td>
</tr>
<tr>
<td>Throttle Position</td>
<td>100% Wide open throttle</td>
<td>0.4 %</td>
<td>\pm 5%</td>
<td>Rotary potentiometer</td>
<td>Throttle position changes by \geq 5%.</td>
</tr>
</tbody>
</table>

Sources of Error in Δv

Sources of Error

Δv Error

- This testing showed the average of all Δv error to be around 4% and the MSRE to be 11%.

- This testing also found the Δv for large but narrow deformation to be unreliable.

<table>
<thead>
<tr>
<th>Test Type</th>
<th>No.</th>
<th>Model</th>
<th>Impact-direction</th>
<th>$\text{Max} \Delta v_{\text{ABS}} \text{ m/s}$</th>
<th>$\text{Max} \Delta v_{\text{REL}} \text{ m/s}$</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frontal</td>
<td>1</td>
<td>O-1 (offset rigid barrier)</td>
<td>front-right</td>
<td>17.4</td>
<td>20.2</td>
<td>-2.8</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>F-1 (concrete block)</td>
<td>front-right</td>
<td>7.3</td>
<td>7.0</td>
<td>-0.3</td>
</tr>
<tr>
<td>Pole</td>
<td>1</td>
<td>P-1 (iron, d=0.3m)</td>
<td>front-center</td>
<td>25.0</td>
<td>17.5</td>
<td>-7.5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>P-2 (iron, d=0.3m)</td>
<td>front-right</td>
<td>22.5</td>
<td>20.9</td>
<td>-1.6</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>P-3 (iron, d=0.3m)</td>
<td>side-right</td>
<td>8.0</td>
<td>7.9</td>
<td>-0.1</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>P-4 (concrete, d=0.3m)</td>
<td>front-center</td>
<td>12.6</td>
<td>11.7</td>
<td>-0.9</td>
</tr>
<tr>
<td>Car to car impact</td>
<td>1</td>
<td>A-1</td>
<td>front-left</td>
<td>8.3</td>
<td>8.0</td>
<td>-0.3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>A-2</td>
<td>front-right</td>
<td>8.8</td>
<td>7.9</td>
<td>-0.9</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>A-3</td>
<td>front-right</td>
<td>4.5</td>
<td>7.2</td>
<td>-2.7</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>A-4</td>
<td>side-right</td>
<td>3.8</td>
<td>3.5</td>
<td>-0.3</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>A-5</td>
<td>front-right</td>
<td>16.2</td>
<td>15.9</td>
<td>-0.3</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>A-6</td>
<td>front-right</td>
<td>15.9</td>
<td>15.6</td>
<td>-0.3</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>A-7</td>
<td>front-center</td>
<td>12.4</td>
<td>11.0</td>
<td>-1.4</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>A-8</td>
<td>front-center</td>
<td>9.7</td>
<td>8.8</td>
<td>-0.9</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>A-9</td>
<td>front</td>
<td>5.7</td>
<td>5.3</td>
<td>-0.4</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>A-10</td>
<td>front</td>
<td>5.0</td>
<td>5.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Multiple rear-end</td>
<td>1</td>
<td>R-1 (1st data)</td>
<td>rear</td>
<td>3.8</td>
<td>4.2</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>R-1 (2nd data)</td>
<td>rear</td>
<td>6.6</td>
<td>6.9</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>R-2 (1st data)</td>
<td>front</td>
<td>5.7</td>
<td>6.1</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>R-2 (2nd data)</td>
<td>rear</td>
<td>7.5</td>
<td>6.9</td>
<td>-0.6</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>R-3</td>
<td>front</td>
<td>17.7</td>
<td>16.8</td>
<td>-0.9</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>R-4 (1st data)</td>
<td>rear</td>
<td>1.9</td>
<td>1.9</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>R-4 (2nd data)</td>
<td>rear</td>
<td>6.3</td>
<td>6.7</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>R-5 (1st data)</td>
<td>front</td>
<td>4.2</td>
<td>3.2</td>
<td>-10.0</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>R-5 (2nd data)</td>
<td>rear</td>
<td>8.3</td>
<td>9.1</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>R-6</td>
<td>front</td>
<td>16.8</td>
<td>16.0</td>
<td>-0.8</td>
</tr>
</tbody>
</table>

Average:

Number of analyzed data:

Root mean square:

1: Number of analyzed data

2: Vehicle without EDR.

Sources of Error in Δv

Δv Error

- This testing showed the average of all Δv error to be around 6% with one σ being also 6%.

- Similarly this reference also found the Δv for large but narrow deformation to be unreliable.

Sources of Error in $\Delta \nu$

Sources of Error

Over/Under reporting

- How about too much run time in the crash pulse recording algorithm?
- This will cause the $\Delta \nu$ to be over reported.

Note the slope gets very small in this area.

SOURCE: SPD Case #01-XXXXX
Sources of Error in Δv

Over/Under reporting

- Creating a table and graph of your own of the data is a good way to look at the crash pulse if you don’t have acceleration data included.

<table>
<thead>
<tr>
<th>t(s)</th>
<th>S(MPH)</th>
<th>v(fps)</th>
<th>g's</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.01</td>
<td>-1.32</td>
<td>-1.94</td>
<td>-6.01</td>
</tr>
<tr>
<td>0.02</td>
<td>-2.41</td>
<td>-3.53</td>
<td>-4.96</td>
</tr>
<tr>
<td>0.03</td>
<td>-4.39</td>
<td>-6.44</td>
<td>-9.01</td>
</tr>
<tr>
<td>0.04</td>
<td>-7.02</td>
<td>-10.29</td>
<td>-11.97</td>
</tr>
<tr>
<td>0.05</td>
<td>-9.43</td>
<td>-13.82</td>
<td>-10.97</td>
</tr>
<tr>
<td>0.06</td>
<td>-11.63</td>
<td>-17.05</td>
<td>-10.02</td>
</tr>
<tr>
<td>0.07</td>
<td>-11.85</td>
<td>-17.37</td>
<td>-1.00</td>
</tr>
<tr>
<td>0.08</td>
<td>-12.94</td>
<td>-18.97</td>
<td>-4.96</td>
</tr>
<tr>
<td>0.09</td>
<td>-13.38</td>
<td>-19.62</td>
<td>-2.00</td>
</tr>
<tr>
<td>0.1</td>
<td>-14.04</td>
<td>-20.58</td>
<td>-3.00</td>
</tr>
<tr>
<td>0.11</td>
<td>-14.7</td>
<td>-21.55</td>
<td>-3.00</td>
</tr>
<tr>
<td>0.12</td>
<td>-14.48</td>
<td>-21.23</td>
<td>1.00</td>
</tr>
<tr>
<td>0.13</td>
<td>-14.7</td>
<td>-21.55</td>
<td>-1.00</td>
</tr>
<tr>
<td>0.14</td>
<td>-14.7</td>
<td>-21.55</td>
<td>0.00</td>
</tr>
<tr>
<td>0.15</td>
<td>-15.14</td>
<td>-22.20</td>
<td>-2.00</td>
</tr>
<tr>
<td>0.16</td>
<td>-15.36</td>
<td>-22.52</td>
<td>-1.00</td>
</tr>
<tr>
<td>0.17</td>
<td>-15.58</td>
<td>-22.84</td>
<td>-1.00</td>
</tr>
<tr>
<td>0.18</td>
<td>-15.8</td>
<td>-23.16</td>
<td>-1.00</td>
</tr>
<tr>
<td>0.19</td>
<td>-16.02</td>
<td>-23.49</td>
<td>-1.00</td>
</tr>
<tr>
<td>0.2</td>
<td>-16.24</td>
<td>-23.81</td>
<td>-1.00</td>
</tr>
<tr>
<td>0.21</td>
<td>-16.24</td>
<td>-23.81</td>
<td>0.00</td>
</tr>
<tr>
<td>0.22</td>
<td>-16.24</td>
<td>-23.81</td>
<td>0.00</td>
</tr>
<tr>
<td>0.23</td>
<td>-16.24</td>
<td>-23.81</td>
<td>0.00</td>
</tr>
<tr>
<td>0.24</td>
<td>-16.24</td>
<td>-23.81</td>
<td>0.00</td>
</tr>
<tr>
<td>0.25</td>
<td>-16.67</td>
<td>-24.44</td>
<td>-1.96</td>
</tr>
<tr>
<td>0.26</td>
<td>-17.11</td>
<td>-25.08</td>
<td>-2.00</td>
</tr>
<tr>
<td>0.27</td>
<td>-18.65</td>
<td>-27.34</td>
<td>-7.01</td>
</tr>
<tr>
<td>0.28</td>
<td>-19.53</td>
<td>-28.63</td>
<td>-4.01</td>
</tr>
<tr>
<td>0.29</td>
<td>-19.75</td>
<td>-28.95</td>
<td>-1.00</td>
</tr>
<tr>
<td>0.3</td>
<td>-20.18</td>
<td>-29.58</td>
<td>-1.96</td>
</tr>
</tbody>
</table>

Remember:

$$a = \frac{\Delta v}{\Delta t}$$

SOURCE: SPD Case #01-XXXXX
Sources of Error in Δv

Sources of Error

Over/Under reporting

- Note the two spikes in acceleration data that cannot be seen so easily in the Δv only graph supplied by the report.
- In this case a secondary slap is believed to have caused the second spike.
- If this data were relied upon at Maximum Δv the impact speed would be over reported significantly.

SOURCE: SPD Case #01-XXXXX
Sources of Error in Δv

Sources of Error

Over/Under reporting

- Toyota Gen 1 and 2 have a positive g offset built in.
- Because it is positive it will cause a frontal crash Δv to be under reported.
Sources of Error in $\Delta \nu$

Sources of Error

Over/Under reporting

- Toyota Gen 1 and 2 have a positive g offset built in.

- Because it is positive it will cause a frontal crash $\Delta \nu$ to be under reported.
Sources of Error in Δv

Sources of Error

Clipping/Under reporting

• Mostly seen in really bad, really fast crashes

• Caused when the Acceleration in the crash exceeds the maximum capability of the accelerometer.

• Will always cause the Δv to be under-reported.
Sources of Error in $\Delta \nu$

Sources of Error

Truncated $\Delta \nu$/Under reporting

- Most often found in short recording duration EDR’s.
- Caused when the accelerometer stops recording before the crash pulse is over.
- Will always cause the $\Delta \nu$ to be under-reported.

<table>
<thead>
<tr>
<th>Time (milliseconds)</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
<th>140</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjusted Algorithm Velocity Change</td>
<td>-1.49</td>
<td>-3.91</td>
<td>-5.88</td>
<td>-9.61</td>
<td>-12.90</td>
<td>-17.51</td>
<td>-23.00</td>
<td>-26.73</td>
<td>-28.70</td>
<td>-31.12</td>
<td>-32.65</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Sources of Error in Δv

Sources of Error

Truncated Δv/Under reporting

- Most often found in short recording duration EDR’s.
- Caused when the accelerometer stops recording before the crash pulse is over.
- Will always cause the Δv to be under-reported.

<table>
<thead>
<tr>
<th>Time (milliseconds)</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
<th>140</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjusted Algorithm Velocity Change</td>
<td>-1.49</td>
<td>-3.91</td>
<td>-5.88</td>
<td>-9.61</td>
<td>-12.90</td>
<td>-17.51</td>
<td>-23.00</td>
<td>-26.73</td>
<td>-28.70</td>
<td>-31.12</td>
<td>-32.65</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Sources of Error in Δv

Sources of Error

Eccentric Collisions/Under reporting

• If the centroid of damage is far from the EDR, this will cause the Dv to be under reported at the EDR.

• This can be adjusted for using the Effective Mass Ratio, EMR.

• More to come on this topic later.
Sources of Error in Δv

Sources of Error

Restitution

- Restitution, put simply, is the amount of bounce in an object. The closer to 1, or 100%, the more the object bounces back.

Calculating Restitution

$$e = \frac{Separate}{Close}$$

Where $Separate$ is the separation speed and $Close$ is the closing speed.
Sources of Error in Δv

Restitution

$$e = \frac{\text{Separate}}{\text{Close}}$$

$$e = \frac{7}{70} = 0.1$$

Where *Separation* is the separation speed and *Closing* is the closing speed.
What can we do with this data?

Inline Momentum

Inversely Proportional Δv

\[\Delta V_1 = -\Delta V_2 \frac{W_2}{W_1} \]

Inline Closing Speed

Inline Closing Speed = \left[\frac{1}{1 + e} \right] \left[|\Delta V_1| + |\Delta V_2| \right]
What can we do with this data?

In-Line Momentum

• Case Study #1
In-Line Momentum EDR
Case Study #1

✓ Chevrolet Cobalt
✓ Chevrolet Trailblazer
✓ Momentum Analysis
 ✓ Need speed of one of the vehicles
 ✓ How
 ✓ Post-Impact velocities
 ✓ Which is most reliable?
✓ Both covered by CDR Tool
 ✓ Precrash data
 ✓ Seatbelt
 ✓ LONGITUDINAL and LATERAL Δ v
Momentum Analysis:

We have the impact speed of the Trailblazer, (0 MPH).

How do we arrive at Post-Impact Speeds?

- Approximate f for the Cobalt
- Yields post impact of 20 MPH for the Cobalt
- Rolling Resistance for the Trailblazer
- Yields Post Impact of 19 MPH for the Trailblazer
- Are these reasonable?

In-Line Momentum Analysis:

- Yields a 51 MPH impact speed for the Cobalt
- Ranging post impact f creates a range of 48 to 53
In-Line Momentum EDR
Case Study #1

✓ What does the CDR data tell us.
 ✓ Seatbelt
 ✓ Pre-crash
 ✓ Longitudinal Δv data
 ✓ Collision already colinear
 ✓ Add Post to Δv
 ✓ Consider Module Error
 ✓ +/- 10%

✓ What do we need?
 ✓ Weights
 ✓ Post Impact v's
 ✓ Cobalt EDR Δv
 ✓ Longitudinal Δv data
 ✓ Consider Module Error
 ✓ +/- 10%
In-Line Momentum EDR
Case Study #1

Cobalt Longitudinal \(\Delta v \) Data

<table>
<thead>
<tr>
<th>Time (milliseconds)</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
<th>140</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal Axis</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>-1.36</td>
<td>-2.71</td>
<td>-5.42</td>
<td>-9.49</td>
<td>-14.23</td>
<td>-20.34</td>
<td>-26.44</td>
<td>-30.50</td>
<td>-33.21</td>
<td>-34.67</td>
<td></td>
</tr>
<tr>
<td>Recorded Velocity</td>
<td></td>
</tr>
<tr>
<td>Time (milliseconds)</td>
<td>160</td>
<td>170</td>
<td>180</td>
<td>190</td>
<td>200</td>
<td>210</td>
<td>220</td>
<td>230</td>
<td>240</td>
<td>250</td>
<td>260</td>
<td>270</td>
<td>280</td>
<td>290</td>
<td>300</td>
</tr>
<tr>
<td>Longitudinal Axis</td>
<td>-35.25</td>
<td>-35.25</td>
<td>-35.25</td>
<td>-35.25</td>
<td>0.00</td>
</tr>
<tr>
<td>Recorded Velocity</td>
<td></td>
</tr>
</tbody>
</table>

Longitudinal Crash Pulse

All of the Crash Pulse?
In-Line Momentum EDR
Case Study #1

\[w_1 = 4810 \]
\[w_2 = 3228 \]
\[\Delta v_2 = -35.25 \text{ mph} \]

\[\Delta V_1 = -\Delta V_2 \frac{W_2}{W_1} \]

\[\Delta v_1 = -\Delta v_2 \left(\frac{w_2}{w_1} \right) \]

\[\Delta v_1 = -(35.25) \left(\frac{3228}{4810} \right) \]

\[\Delta v_1 = (35.25) (0.6711) \]

\[\Delta v_1 = 23.65 \]

Cobalt Longitudinal \(\Delta v \) Data

<table>
<thead>
<tr>
<th>Time (milliseconds)</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
<th>140</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal Axis Recorded Velocity</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>-1.36</td>
<td>-2.71</td>
<td>-5.42</td>
<td>-9.49</td>
<td>-14.23</td>
<td>-20.34</td>
<td>-26.44</td>
<td>-30.60</td>
<td>-33.21</td>
<td>-34.57</td>
</tr>
<tr>
<td>Time (milliseconds)</td>
<td>160</td>
<td>170</td>
<td>180</td>
<td>190</td>
<td>200</td>
<td>210</td>
<td>220</td>
<td>230</td>
<td>240</td>
<td>250</td>
<td>260</td>
<td>270</td>
<td>280</td>
<td>290</td>
<td>300</td>
</tr>
<tr>
<td>Longitudinal Axis Recorded Velocity</td>
<td>-35.25</td>
<td>-35.25</td>
<td>-35.25</td>
<td>-35.25</td>
<td>0.00</td>
</tr>
</tbody>
</table>
In-Line Momentum EDR
Case Study #1

You must also consider the EDR accuracy of +/- 10%

\[w_1 = 4810 \]
\[w_2 = 3228 \]
\[\Delta v_2 = 35.25 \text{mph} \]

\[\Delta V_1 = -\Delta V_2 \frac{W_2}{W_1} \]

\[\Delta v_1 = -\Delta v_2 \left(\frac{w_2}{w_1} \right) \]

\[\Delta v_1 = -(31.72) \left(\frac{3228}{4810} \right) \]
\[\Delta v_1 = -(38.77) \left(\frac{3228}{4810} \right) \]

\[\Delta v_1 = 21.28 \]
\[\Delta v_1 = 26.02 \]

Calculated \(\Delta v \) range for Trailblazer

<table>
<thead>
<tr>
<th></th>
<th>Low</th>
<th>Target</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta v)</td>
<td>21.82</td>
<td>23.65</td>
<td>26.02</td>
</tr>
</tbody>
</table>
In-Line Momentum EDR
Case Study #1

✓ Δv of each vehicle
✓ A restitution coefficient, (we will use 10%)

Inline Closing Speed

$$v_{close} = \left[\frac{1}{1+e} \right] |\Delta v_1| + |\Delta v_2|$$

Target Δv

$$v_{close} = \left[\frac{1}{1+e} \right] [23.65] + [-35.25]$$

$$v_{close} = [0.909] [58.9]$$

$$v_{close} = 53.54 \text{ mph}$$
In-Line Momentum EDR
Case Study #1

✓ ∆\(v\) of each vehicle
✓ A restitution coefficient, (we will use 10%)

Inline Closing Speed = \[\frac{1}{1+e}\] \(\left[|\Delta V_1| + |\Delta V_2|\right]\)

Low ∆\(v\)
\[v_{\text{close}} = \frac{1}{1+e} \left[|\Delta v_1| + |\Delta v_2|\right]\]
\[v_{\text{close}} = \frac{1}{1+0.1} \left[21.82 + (-35.25)\right]\]
\[v_{\text{close}} = [0.909][57.07]\]
\[v_{\text{close}} = 51.87 \text{ mph}\]

High ∆\(v\)
\[v_{\text{close}} = \frac{1}{1+e} \left[|\Delta v_1| + |\Delta v_2|\right]\]
\[v_{\text{close}} = \frac{1}{1+0.1} \left[26.02 + (-35.25)\right]\]
\[v_{\text{close}} = [0.909][61.27]\]
\[v_{\text{close}} = 55.69 \text{ mph}\]

Calculated closing speed range

<table>
<thead>
<tr>
<th>Low</th>
<th>Target</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>51.87</td>
<td>53.54</td>
<td>55.69</td>
</tr>
</tbody>
</table>
In-Line Momentum EDR
Case Study #2

✓ Delta-v Analysis
✓ Pre-crash Data Analysis

EDR Analysis

- Last Data Point: 53 53
- +/- ABS: N/A N/A
- Braking: -7.5 -0
- Speedo Error: -2.1 +2.1
- 43 to 55

Brake Switch indicates off throughout recording.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>-5 sec</th>
<th>-4 sec</th>
<th>-3 sec</th>
<th>-2 sec</th>
<th>-1 sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle Speed (MPH)</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
</tr>
<tr>
<td>Engine Speed (RPM)</td>
<td>1866</td>
<td>1792</td>
<td>1792</td>
<td>1792</td>
<td>1792</td>
</tr>
<tr>
<td>Percent Time in Pedal</td>
<td>33</td>
<td>32</td>
<td>33</td>
<td>33</td>
<td>32</td>
</tr>
<tr>
<td>Accelerator Pedal Position (percent)</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Anti-lock Brake System Active (If Equipped)</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Lateral Acceleration (gels/hr/If Equipped)</td>
<td>Invalid</td>
<td>Invalid</td>
<td>Invalid</td>
<td>Invalid</td>
<td>Invalid</td>
</tr>
<tr>
<td>Yaw Rate (degrees per second) (If Equipped)</td>
<td>Invalid</td>
<td>Invalid</td>
<td>Invalid</td>
<td>Invalid</td>
<td>Invalid</td>
</tr>
<tr>
<td>Steering Wheel Angle (degrees) (If Equipped)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
In-Line Momentum EDR
Case Study #1
Summary

<table>
<thead>
<tr>
<th>Momentum Analysis</th>
<th>Δv Derived</th>
<th>EDR Pre-crash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min: 48 MPH</td>
<td>Min: 51 MPH</td>
<td>Min: 43 MPH</td>
</tr>
<tr>
<td>Max: 53 MPH</td>
<td>Max: 56 MPH</td>
<td>Max: 55 MPH</td>
</tr>
</tbody>
</table>

✔ What is the Speed range you should use?
 ✔ Overall range 43-55
 ✔ 51 – 53 is compelling to the lay person.
 ✔ The Speeds most closely overlap in this range.
In-Line Momentum

Case Study #2
In-Line Momentum EDR
Case Study #2

1996 Chevrolet Tahoe
Nissan Pathfinder
Momentum Analysis
 Need speed of one of the vehicles
 How
 Post-Impact velocities
 Which is most reliable?
Tahoe covered by CDR Tool
 Seatbelt
 Ignition Cycles at Deployment
 Ignition Cycles at Investigation
 LONGITUDINAL Δ v
No Precrash information
 Is this useful
 If so, how do I use it.
In-Line Momentum EDR
Case Study #2

✓ Momentum Analysis:
 ✓ How do we arrive at a speed for one of the vehicles?
 ✓ Impact speed of vehicle #2
 ✓ Acceleration from stop sign, approximated 0.15
 ✓ Yields an impact speed of 25 MPH
 ✓ How do we arrive at Post-Impact Speeds?
 ✓ Spin analysis on the Pathfinder
 ✓ Yields a post impact speed of 34 MPH
 ✓ Is this reasonable for the Tahoe?
 ✓ Assign to the Tahoe
 ✓ In-Line Momentum Analysis:
 ✓ Police Tahoe travelling at 39 MPH.
In-Line Momentum EDR
Case Study #2

✓ Momentum Analysis:
 ✓ Range the impact speeds using reasonable f values.
 ✓ 0.1 to 0.25 acceleration factor
 ✓ Yields impact velocity of 20.4 to 32.2 mph respectively
 ✓ Impact velocity effect.
 ✓ 42MPH for 20.4 Impact
 ✓ 22 MPH for 32.2 MPH Impact
✓ In-Line Momentum Analysis:
 ✓ Does any of this make sense?
In-Line Momentum EDR

Case Study #2

All of the Crash Pulse?

Tahoe Longitudinal Δv Data

<table>
<thead>
<tr>
<th>Time (milliseconds)</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
<th>140</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recorded Velocity Change (MPH)</td>
<td>-0.66</td>
<td>-2.65</td>
<td>-5.05</td>
<td>-7.66</td>
<td>-9.43</td>
<td>-10.75</td>
<td>-12.07</td>
<td>-12.94</td>
<td>-13.82</td>
<td>-14.48</td>
<td>-15.35</td>
<td>-16.24</td>
<td>-15.89</td>
<td>-17.55</td>
<td>-17.99</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time (milliseconds)</th>
<th>160</th>
<th>170</th>
<th>180</th>
<th>190</th>
<th>200</th>
<th>210</th>
<th>220</th>
<th>230</th>
<th>240</th>
<th>250</th>
<th>260</th>
<th>270</th>
<th>280</th>
<th>290</th>
<th>300</th>
</tr>
</thead>
</table>

Tahoe Crash Pulse

![Tahoe Crash Pulse Graph](image)

- Blue line: S(MPH)
- Red line: g's
In-Line Momentum EDR
Case Study #2

✓ What do we adjust for?
 ✓ EDR error (+/- 10%)
 ✓ Restitution
✓ Yields
 ✓ Low Δv
 ✓ Target Δv
 ✓ High Δv

Tahoe Δv range:

$\Delta v_{1Low} = -14.71\text{mph}$

$\Delta v_{1Tgt} = -16.35\text{mph}$

$\Delta v_{1High} = -17.43\text{mph}$

Tahoe Longitudinal Δv Data

<table>
<thead>
<tr>
<th>Time (milliseconds)</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
<th>140</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recorded Velocity Change (MPH)</td>
<td>-0.66</td>
<td>-2.65</td>
<td>-5.05</td>
<td>-7.66</td>
<td>-9.43</td>
<td>-10.75</td>
<td>-12.07</td>
<td>-12.94</td>
<td>-13.82</td>
<td>-14.48</td>
<td>-15.36</td>
<td>-16.24</td>
<td>-16.89</td>
<td>-17.55</td>
<td>-17.99</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time (milliseconds)</th>
<th>160</th>
<th>170</th>
<th>180</th>
<th>190</th>
<th>200</th>
<th>210</th>
<th>220</th>
<th>230</th>
<th>240</th>
<th>250</th>
<th>260</th>
<th>270</th>
<th>280</th>
<th>290</th>
<th>300</th>
</tr>
</thead>
</table>
In-Line Momentum EDR

Case Study #2

\[w_1 = 3980 \]
\[w_2 = 6080 \]
\[\Delta v_{1_{Low}} = -14.71\text{mph} \]
\[\Delta v_{1_{Tgt}} = -16.35\text{mph} \]
\[\Delta v_{1_{High}} = -17.43\text{mph} \]

Calculate Pathfinder \(\Delta v \)

\[\Delta v_{1_{Tgt}} = -\Delta v_2 \left(\frac{w_2}{w_1} \right) \]
\[\Delta v_{1_{Tgt}} = -(-16.35) \left(\frac{6080}{3980} \right) \]
\[\Delta v_{1_{Tgt}} = (16.35)(1.52) \]
\[\Delta v_{1_{Tgt}} = 24.97\text{mph} \]

Tahoe Longitudinal \(\Delta v \) Data

<table>
<thead>
<tr>
<th>Time (milliseconds)</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
<th>140</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recorded Velocity Change (MPH)</td>
<td>-0.66</td>
<td>-2.85</td>
<td>-5.05</td>
<td>-7.66</td>
<td>-9.43</td>
<td>-10.75</td>
<td>-12.07</td>
<td>-12.94</td>
<td>-13.82</td>
<td>-14.48</td>
<td>-15.36</td>
<td>-16.24</td>
<td>-16.89</td>
<td>-17.55</td>
<td>-17.99</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time (milliseconds)</th>
<th>160</th>
<th>170</th>
<th>180</th>
<th>190</th>
<th>200</th>
<th>210</th>
<th>220</th>
<th>230</th>
<th>240</th>
<th>250</th>
<th>260</th>
<th>270</th>
<th>280</th>
<th>290</th>
<th>300</th>
</tr>
</thead>
</table>
In-Line Momentum EDR

Case Study #2

\[w_1 = 3980 \]
\[w_2 = 6080 \]

Tahoe \(\Delta v \) range:
\[\Delta v_{1,\text{Low}} = -14.71 \text{mph} \]
\[\Delta v_{1,\text{Tgt}} = -16.35 \text{mph} \]
\[\Delta v_{1,\text{High}} = -17.43 \text{mph} \]

Pathfinder \(\Delta v \) range:
\[\Delta v_{2,\text{Low}} = 22.47 \text{mph} \]
\[\Delta v_{2,\text{Tgt}} = 24.97 \text{mph} \]
\[\Delta v_{2,\text{High}} = 26.62 \text{mph} \]

Tahoe Longitudinal \(\Delta v \) Data

<table>
<thead>
<tr>
<th>Time (milliseconds)</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
<th>140</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recorded Velocity Change (MPH)</td>
<td>-0.66</td>
<td>-2.85</td>
<td>-5.05</td>
<td>-7.68</td>
<td>-9.43</td>
<td>-10.75</td>
<td>-12.07</td>
<td>-12.94</td>
<td>-13.82</td>
<td>-14.48</td>
<td>-15.36</td>
<td>-16.24</td>
<td>-16.89</td>
<td>-17.55</td>
<td>-17.99</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time (milliseconds)</th>
<th>160</th>
<th>170</th>
<th>180</th>
<th>190</th>
<th>200</th>
<th>210</th>
<th>220</th>
<th>230</th>
<th>240</th>
<th>250</th>
<th>260</th>
<th>270</th>
<th>280</th>
<th>290</th>
<th>300</th>
</tr>
</thead>
</table>
In-Line Momentum EDR

Case Study #2

\[w_1 = 3980 \]
\[w_2 = 6080 \]

Tahoe \(\Delta v \) range:
\[\Delta v_{1Low} = -14.71 \text{mph} \]
\[\Delta v_{1Tgt} = -16.35 \text{mph} \]
\[\Delta v_{1High} = -17.43 \text{mph} \]

Pathfinder \(\Delta v \) range:
\[\Delta v_{2Low} = 22.47 \text{mph} \]
\[\Delta v_{2Tgt} = 24.97 \text{mph} \]
\[\Delta v_{2High} = 26.62 \text{mph} \]

Tahoe Longitudinal \(\Delta v \) Data

<table>
<thead>
<tr>
<th>Time (milliseconds)</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
<th>140</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recorded Velocity Change (MPH)</td>
<td>-0.66</td>
<td>-2.65</td>
<td>-5.05</td>
<td>-7.66</td>
<td>-9.43</td>
<td>-10.75</td>
<td>-12.07</td>
<td>-12.94</td>
<td>-13.82</td>
<td>-14.48</td>
<td>-15.36</td>
<td>-16.24</td>
<td>-16.89</td>
<td>-17.55</td>
<td>-17.99</td>
</tr>
</tbody>
</table>

| Time (milliseconds) | 160 | 170 | 180 | 190 | 200 | 210 | 220 | 230 | 240 | 250 | 260 | 270 | 280 | 290 | 300 |
|--------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
In-Line Momentum EDR
Case Study #2

\[v_f - v_0 = \Delta v \]
\[v_f - v_0 = \Delta v \]
\[v_3 - v_1 = \Delta v_{lx} \]
In-Line Momentum EDR
Case Study #2

\[v_3 - v_1 = \Delta v_{1x} \]

Solve for \(v_1 \)

\[v_1 = v_3 - \Delta v_{1x} \]
In-Line Momentum EDR
Case Study #2

Pathfinder Δv range:
$\Delta v_{2,\text{Low}} = 22.47 \text{ mph}$
$\Delta v_{2,Tgt} = 24.97 \text{ mph}$
$\Delta v_{2,\text{High}} = 26.62 \text{ mph}$

Pathfinder impact speed:
$v_{2,Tgt} = 9.23 \text{ mph}$
$v_{2,\text{Low}} = 7.58 \text{ mph}$
$v_{2,\text{High}} = 11.73 \text{ mph}$

Tahoe Longitudinal Δv Data

<table>
<thead>
<tr>
<th>Time (milliseconds)</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
<th>140</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recorded Velocity Change (MPH)</td>
<td>-0.66</td>
<td>-2.65</td>
<td>-5.05</td>
<td>-7.68</td>
<td>-9.43</td>
<td>-10.75</td>
<td>-12.07</td>
<td>-12.94</td>
<td>-13.82</td>
<td>-14.48</td>
<td>-15.36</td>
<td>-16.24</td>
<td>-16.89</td>
<td>-17.55</td>
<td>-17.99</td>
</tr>
</tbody>
</table>

| Time (milliseconds) | 160 | 170 | 180 | 190 | 200 | 210 | 220 | 230 | 240 | 250 | 260 | 270 | 280 | 290 | 300 |
|---------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
In-Line Momentum EDR
Case Study #2

Tahoe Δv range:
\[\Delta v_{\text{Low}} = -14.71 \text{mph} \]
\[\Delta v_{\text{Tgt}} = -16.35 \text{mph} \]
\[\Delta v_{\text{High}} = -17.43 \text{mph} \]

Tahoe impact speed:
\[v_{\text{Low}} = 48.91 \text{mph} \]
\[v_{\text{Tgt}} = 50.55 \text{mph} \]
\[v_{\text{High}} = 51.63 \text{mph} \]
In-Line Momentum EDR
Case Study #2

Summary

<table>
<thead>
<tr>
<th>Momentum Analysis</th>
<th>EDR Derived</th>
<th>✓ Which do you believe and why?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min: 22 MPH</td>
<td>Min: 48 MPH</td>
<td>✓ Momentum</td>
</tr>
<tr>
<td>Max: 42 MPH</td>
<td>Max: 51 MPH</td>
<td>✓ Calculated impact velocity of 20-32 MPH for Pathfinder</td>
</tr>
<tr>
<td></td>
<td></td>
<td>✓ Δv derived.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>✓ Utilize the Post impact combined with delta v to obtain a speed for the Pathfinder and the Tahoe.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>✓ Yields impact velocity of 11-15 MPH for Pathfinder</td>
</tr>
<tr>
<td></td>
<td></td>
<td>✓ Yields impact velocity of 48-51 MPH for the Tahoe</td>
</tr>
</tbody>
</table>

Momentum EDR Derived

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
In-Line Momentum EDR
Case Study #2
Non-collinear Collisions

Eccentric Collisions/Under reporting

• If the centroid of damage is far from the EDR, this will cause the Δv to be under reported at the EDR.

• This can be adjusted for using the Effective Mass Ratio, EMR.
Non-collinear Collisions

Effective Mass Ratio (λ)

- An adjustment for the Δv is necessary when the PDOF does not go through the vehicles COM.
Non-collinear Collisions

Calculating Effective Mass Ratio

• Two ways
 – Calculate mathemagically
 – Estimate (Rich Estimation)
Non-collinear Collisions

Calculating Effective Mass Ratio

- Calculate Mathemagically
 - k is radius of gyration
 - h is the Moment arm of the crash impulse
- How do you find k^2?

$$\gamma = \frac{k^2}{k^2 + h^2}$$
Non-collinear Collisions

Calculating Effective Mass Ratio

• What is the *Radius of Gyration*?
 - A length that represents the distance in a rotating system between the point about which it is rotating and the point to or from which a transfer of energy has the maximum effect

• How do you find k^2?

$$k^2 = \frac{I_y g}{W}$$
Non-collinear Collisions

Calculating Effective Mass Ratio

• Calculate radius of gyration
 – I_γ is the yaw moment of inertia
 – g is gravity
 – w is the weight of the vehicle

$$k^2 = \frac{I_\gamma g}{w}$$
Non-collinear Collisions

Calculating Effective Mass Ratio

- Calculate adjusted $\Delta \nu$
 - $\Delta \nu_{edr}$ is the EDR reported $\Delta \nu$
 - g is EMR
 - $\Delta \nu_{adjusted}$ is the EMR Adjusted $\Delta \nu$

$$\Delta \nu_{adjusted} = \frac{\Delta \nu_{edr}}{\gamma}$$
Non-collinear Collisions

Calculating Effective Mass Ratio

- Andy Rich Table and graph
 - Closely approximate your vehicle on the graph
 - Utilize the table to estimate your EMR.
Non-collinear EDR
Case Study #3

✓ Volkswagen
✓ 2011 Lexus ES350
✓ Momentum Analysis
✓ Lexus ES350 covered by CDR Tool
 ✓ Seatbelt
 ✓ Ignition Cycles at Deployment
 ✓ Ignition Cycles at Investigation
 ✓ LATERAL $\Delta \nu$
 ✓ LONITUDINAL $\Delta \nu$
✓ Precrash information
 ✓ Approx 5 sec
 ✓ Typical Speed, brake, etc.
Non-collinear EDR
Case Study #3

- Volkswagen
- 2011 Lexus ES350
- Momentum Analysis
- Lexus ES350 covered by

<table>
<thead>
<tr>
<th>CDR File Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Entered VIN/Frame Number: JTHBK1EG1B2419138</td>
</tr>
<tr>
<td>User: D. Maggio</td>
</tr>
<tr>
<td>Case Number: 15-23849</td>
</tr>
<tr>
<td>EDR Data Imaging Date: 03/06/2017</td>
</tr>
<tr>
<td>Crash Date: 11/01/2015</td>
</tr>
<tr>
<td>Filename: JTHBK1EG1B2419138 _ACM.CDRX</td>
</tr>
<tr>
<td>Saved on: Monday, March 6 2017 at 03:19:55</td>
</tr>
<tr>
<td>Imaged with CDR version: Crash Data Retrieval Tool 17.2</td>
</tr>
<tr>
<td>Imaged with Software Licensed to (Company Name): Maricopa County Sheriff</td>
</tr>
<tr>
<td>Reported with CDR version: Crash Data Retrieval Tool 17.6.1</td>
</tr>
<tr>
<td>Reported with Software Licensed to (Company Name): Scottsdale Police Department</td>
</tr>
<tr>
<td>EDR Device Type: Airbag Control Module</td>
</tr>
<tr>
<td>Event(s) recovered: Front/Rear (1), Side (1)</td>
</tr>
</tbody>
</table>
Non-collinear EDR
Case Study #3

- Volkswagen
- 2011 Lexus ES350
- Momentum Analysis
- Lexus ES350 covered by

<table>
<thead>
<tr>
<th>Data Element Name</th>
<th>Positive Sign Notation Indicates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Longitudinal DeltaV</td>
<td>Forward</td>
</tr>
<tr>
<td>Longitudinal DeltaV</td>
<td>Forward</td>
</tr>
<tr>
<td>Max. Lateral DeltaV, B-Pillar Sensor</td>
<td>Outside to Inside</td>
</tr>
<tr>
<td>Max. Lateral DeltaV, C-Pillar Sensor</td>
<td>Outside to Inside</td>
</tr>
<tr>
<td>Max. Lateral DeltaV, Front Door Sensor</td>
<td>Outside to Inside</td>
</tr>
<tr>
<td>Max. Lateral DeltaV, Slide Door Sensor</td>
<td>Outside to Inside</td>
</tr>
<tr>
<td>Lateral DeltaV, B-Pillar Sensor</td>
<td>Outside to Inside</td>
</tr>
<tr>
<td>Lateral DeltaV, C-Pillar Sensor</td>
<td>Outside to Inside</td>
</tr>
<tr>
<td>Lateral DeltaV, Airbag ECU Sensor</td>
<td>Left to Right</td>
</tr>
<tr>
<td>Roll Angle Peak</td>
<td>Clockwise Rotation</td>
</tr>
<tr>
<td>Roll Angle</td>
<td>Clockwise Rotation</td>
</tr>
<tr>
<td>Lateral Acceleration, Airbag ECU Sensor *</td>
<td>Right to Left</td>
</tr>
</tbody>
</table>

* For sensing a rollover
Non-collinear EDR
Case Study #3

Momentum Analysis

Volkswagen
- \(w_1 = 3440 \text{ lbs} \)
- \(\alpha = 0 \)
- \(\theta = 32 \)
- \(v_3 = 41.93 \text{ mph} \)
- \(v_1 = 78.31 \text{ mph} \)

Lexus ES350
- \(w_2 = 3695 \text{ lbs} \)
- \(\psi = 90 \)
- \(\phi = 22 \)
- \(v_4 = 42.94 \text{ mph} \)
- \(v_2 = 36.77 \text{ mph} \)

Pre-Crash Data, -5 to 0 seconds (Mo)

<table>
<thead>
<tr>
<th>Time (sec)</th>
<th>-4.7</th>
<th>-3.7</th>
<th>-2.7</th>
<th>-1.7</th>
<th>-0.7</th>
<th>0 (TRG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle Speed (MPH [km/h])</td>
<td>36 [58]</td>
<td>37.3 [60]</td>
<td>37.3 [60]</td>
<td>37.3 [60]</td>
<td>37.3 [60]</td>
<td>37.3 [60]</td>
</tr>
<tr>
<td>Brake Switch</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>Accelerator Rate (V)</td>
<td>1.21</td>
<td>1.25</td>
<td>1.21</td>
<td>1.13</td>
<td>1.17</td>
<td>1.25</td>
</tr>
<tr>
<td>Engine RPM (RPM)</td>
<td>1,200</td>
<td>1,200</td>
<td>1,200</td>
<td>1,200</td>
<td>1,200</td>
<td>1,200</td>
</tr>
</tbody>
</table>
Non-collinear EDR

Case Study #3

Momentum Analysis

<table>
<thead>
<tr>
<th></th>
<th>Volkswagen</th>
<th>Lexus ES350</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_1</td>
<td>3440 lbs</td>
<td>3695 lbs</td>
</tr>
<tr>
<td>α</td>
<td>0</td>
<td>ψ = 90</td>
</tr>
<tr>
<td>θ</td>
<td>32</td>
<td>ϕ = 22</td>
</tr>
<tr>
<td>v_3</td>
<td>41.93 mph</td>
<td>v_4 = 42.94 mph</td>
</tr>
<tr>
<td>v_1</td>
<td>78.31 mph</td>
<td>v_2 = 36.77 mph</td>
</tr>
</tbody>
</table>

Lexus ES350 Calculated Lateral Δv

\[\Delta v_y = v_4 \sin(\beta) \]

$\beta = \psi - \phi$

$\beta = 90^\circ - 22^\circ$

$\beta = 68^\circ$

\[\Delta v_y = (42.94)(\sin(68^\circ)) \]

$\Delta v_y = 39.8 \text{ mph}$
Non-collinear EDR
Case Study #3

✓ EDR Data \(\Delta v \) Data
 ✓ Longitudinal \(\Delta v \)
 ✓ Lateral \(\Delta v \)
✓ Which is important to us in this case?
✓ Did the entire crash pulse get recorded?
✓ What is the \(\Delta v \) we should use?
Non-collinear EDR
Case Study #3

✓ Lateral Δv Data
✓ Did the entire crash pulse get recorded?
✓ What is the Δv we should use?

<table>
<thead>
<tr>
<th>t(ms)</th>
<th>Lat Δv (mph)</th>
<th>Lat Δv (fps)</th>
<th>g's</th>
</tr>
</thead>
<tbody>
<tr>
<td>-23</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>-19</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>-15</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>-11</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>-7</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>-3</td>
<td>-0.1</td>
<td>-0.15</td>
<td>-1.14</td>
</tr>
<tr>
<td>1</td>
<td>0.1</td>
<td>0.15</td>
<td>2.28</td>
</tr>
<tr>
<td>5</td>
<td>0.7</td>
<td>1.03</td>
<td>6.83</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>2.93</td>
<td>14.80</td>
</tr>
<tr>
<td>13</td>
<td>3.7</td>
<td>5.42</td>
<td>19.35</td>
</tr>
<tr>
<td>17</td>
<td>5</td>
<td>7.33</td>
<td>14.80</td>
</tr>
<tr>
<td>21</td>
<td>6.5</td>
<td>9.53</td>
<td>17.07</td>
</tr>
<tr>
<td>25</td>
<td>8.2</td>
<td>12.02</td>
<td>19.35</td>
</tr>
<tr>
<td>29</td>
<td>9.9</td>
<td>14.51</td>
<td>19.35</td>
</tr>
<tr>
<td>33</td>
<td>11.7</td>
<td>17.15</td>
<td>20.49</td>
</tr>
<tr>
<td>37</td>
<td>13.4</td>
<td>19.64</td>
<td>19.35</td>
</tr>
<tr>
<td>41</td>
<td>15.1</td>
<td>22.14</td>
<td>19.35</td>
</tr>
<tr>
<td>45</td>
<td>16.5</td>
<td>24.19</td>
<td>15.93</td>
</tr>
<tr>
<td>49</td>
<td>17.4</td>
<td>25.51</td>
<td>10.24</td>
</tr>
<tr>
<td>53</td>
<td>18.6</td>
<td>27.27</td>
<td>13.66</td>
</tr>
<tr>
<td>57</td>
<td>19.7</td>
<td>28.88</td>
<td>12.52</td>
</tr>
<tr>
<td>61</td>
<td>20.5</td>
<td>30.05</td>
<td>9.11</td>
</tr>
<tr>
<td>65</td>
<td>20.9</td>
<td>30.64</td>
<td>4.55</td>
</tr>
<tr>
<td>69</td>
<td>21.1</td>
<td>30.93</td>
<td>2.28</td>
</tr>
</tbody>
</table>

$\Delta v_{edr} = 21.1 \text{mph}$

$21.1 \text{mph} \neq 39.8 \text{mph}$
Non-collinear EDR
Case Study #3

✓ Lateral Δv Data
✓ Adjust for Effective Mass Ratio
 ✓ I_y found on Autostats
 ✓ Used to calculate k^2
 ✓ Need to know h

$$k^2 = \frac{I_y g}{w} \quad \gamma = \frac{k^2}{k^2 + h^2}$$

$\Delta v_{edr} = 21.1 \text{mph}$

$h = 4.7 \text{ ft}$

$\gamma =$
Non-collinear EDR
Case Study #3

✓ Lateral Δv Data
✓ Adjust for Effective Mass Ratio
 ✓ I_y found on Autostats
 ✓ Used to calculate k^2
 ✓ Need to know h

$k^2 = \frac{I_y g}{w}$

$k^2 = \frac{(2481.1 \text{ lb}\cdot \text{ft}\cdot \text{sec}^2)(32.2 \text{ ft} / \text{sec}^2)}{3695 \text{ lb}}$

$k^2 = \frac{(78,891.4 \text{ lb}\cdot \text{ft}^2)}{3695 \text{ lb}}$

$k^2 = 21.35 \text{ ft}^2$

$\gamma = \frac{k^2}{k^2 + h^2}$

$\gamma = \frac{21.35 \text{ ft}^2}{21.35 \text{ ft}^2 + (4.7 \text{ ft})^2}$

$\gamma = \frac{21.35 \text{ ft}^2}{21.35 \text{ ft}^2 + 22.09 \text{ ft}^2}$

$\gamma = \frac{21.35 \text{ ft}^2}{43.44 \text{ ft}^2}$

$\gamma = 0.4914$

$\Delta v_{edr} = 21.1 \text{ mph}$

$k^2 = 21.35 \text{ ft}^2$

$h = 4.7 \text{ ft}$

$\gamma = 0.4914$
Non-collinear EDR
Case Study #3

Effective Mass Ratio for Various Vehicle Types

- Honda Fit
- Toyota Camry
- Crown Vic
- Honda CRV
- Chev Tahoe
- F150 Xtra Cab Pickup

\[\Delta v_{edr} = 21.1 \, \text{mph} \]
\[k^2 = 21.35 \, \text{ft}^2 \]
\[h = 4.7 \, \text{ft} \]
\[\gamma = 0.4914 \]

Authored by Andrew Rich
Non-collinear EDR
Case Study #3

<table>
<thead>
<tr>
<th>h (ft)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>h (m)</td>
<td>0</td>
<td>0.30</td>
<td>0.61</td>
<td>0.91</td>
<td>1.22</td>
<td>1.52</td>
<td>1.83</td>
<td>2.13</td>
<td>2.44</td>
</tr>
<tr>
<td>EMR</td>
<td>1</td>
<td>0.95</td>
<td>0.83</td>
<td>0.7</td>
<td>0.57</td>
<td>0.45</td>
<td>0.37</td>
<td>0.3</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Soooooo....

Comparing each method you can see, it doesn’t make much difference which way you do it!

Mathemagically: 0.4914
Graphically: 0.49
Table: 0.486

$\Delta v_{edr} = 21.1 \text{ mph}$
$k^2 = 21.35 \text{ ft}^2$
$h = 4.7 \text{ ft}$
$\gamma = 0.4914$
Non-collinear EDR
Case Study #3

- Lateral Δv Data
- Adjust for Effective Mass Ratio

$$
\Delta v_{\text{adjusted}} = \frac{\Delta v_{\text{edr}}}{\gamma}
$$

$$
\Delta v_{\text{adjusted}} = \frac{21.1 \text{mph}}{0.4914}
$$

$$
\Delta v_{\text{adjusted}} = 42.93 \text{mph}
$$

You must also consider edr error:

Low

$$
\Delta v_{\text{adjusted}} = \frac{\Delta v_{\text{edr}}}{\gamma}
$$

$$
\Delta v_{\text{adjusted}} = \frac{18.99 \text{mph}}{0.4914}
$$

$$
\Delta v_{\text{adjusted}} = 38.64 \text{mph}
$$

Calculated 39.8 mph

Target

$$
\Delta v_{\text{adjusted}} = \frac{\Delta v_{\text{edr}}}{\gamma}
$$

$$
\Delta v_{\text{adjusted}} = \frac{21.1 \text{mph}}{0.4914}
$$

$$
\Delta v_{\text{adjusted}} = 42.93 \text{mph}
$$

High

$$
\Delta v_{\text{adjusted}} = \frac{\Delta v_{\text{edr}}}{\gamma}
$$

$$
\Delta v_{\text{adjusted}} = \frac{23.21 \text{mph}}{0.4914}
$$

$$
\Delta v_{\text{adjusted}} = 47.23 \text{mph}
$$
Non-collinear EDR
Case Study #3

✓ Lateral Δv Data
✓ Remember:

$$\Delta V_1 = -\Delta V_2 \frac{W_2}{W_1}$$

$$\Delta v_{1x} = -\Delta v_{2y} \left(\frac{W_2}{W_1} \right)$$

How can the vectors be made co-linear?
Non-collinear EDR
Case Study #3

✓ Lateral Δv Data
✓ Remember:

$\Delta v_{2y} = 39.8 \text{mph}$
$\Delta v_{1x} = \frac{W_2}{W_1}$
Non-collinear EDR
Case Study #3

Momentum Analysis

<table>
<thead>
<tr>
<th>Volkswagen</th>
<th>Lexus ES350</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w_1=3440$ lbs</td>
<td>$w_2=3695$ lbs</td>
</tr>
<tr>
<td>$\alpha = 0$</td>
<td>$\psi = 90$</td>
</tr>
<tr>
<td>$\theta = 32$</td>
<td>$\phi = 22$</td>
</tr>
<tr>
<td>$v_3 = 41.93$ mph</td>
<td>$v_4 = 42.94$ mph</td>
</tr>
<tr>
<td>$v_1 = 78.31$ mph</td>
<td>$v_2 = 36.77$ mph</td>
</tr>
</tbody>
</table>

Volkswagen Calculated Longitudinal Post Impact Velocity:

\[
v_{3x} = v_4 s \cos(\theta) = 41.93 \cos(32^\circ) = 35.55 \text{ mph}
\]

\[
\Delta v_{1x} = -\Delta v_{2y} \left(\frac{w_2}{w_1} \right)
\]

\[
\Delta v_{2y} = 39.8 \text{ mph}
\]

\[
\Delta v_{1x} = \quad v_{3x} = 35.55 \text{ mph}
\]
Non-collinear EDR
Case Study #3

✓ Lateral Δv Data
✓ Remember:

$V_{3x} = 35.55\text{mph}$

$\Delta v_{1x} = \Delta v_{2y} \frac{w_2}{w_1}$

$\Delta v_{2y} = 39.8\text{mph}$
$\Delta v_{1x} = v_{3x} = 35.55\text{mph}$
Non-collinear EDR

Case Study #3

✓ Lateral Δv Data
✓ Remember:

$\Delta v_{2y} = 39.8\text{mph}$

$\Delta v_{1x} = \frac{w_2}{w_1}$
Non-collinear EDR
Case Study #3

✓ Lateral Δv Data
✓ Remember:

$$\Delta v_{1x} = -\Delta v_{2y} \left(\frac{w_2}{w_1} \right)$$

$$\Delta v_{1x} = -(39.8) \left(\frac{3695}{3440} \right)$$

$$\Delta v_{1x} = -39.8(1.07)$$

$$\Delta v_{1x} = -42.58$$

$$\Delta v_{2y} = 39.8 \text{ mph}$$
$$\Delta v_{1x} = -42.58 \text{ mph}$$
$$v_{3x} = 35.55 \text{ mph}$$
Non-collinear EDR
Case Study #3

✓ Lateral Δv Data
✓ Remember:

$v_1 = v_{3x} + \Delta v_{1x}$

$v_1 = 35.55 + 42.58$

$v_1 = 78.13$ mph

$v_{3x} = 35.55$ mph

$\Delta v_{1x} = -42.58$ mph

$\Delta v_{2y} = 39.8$ mph

$v_{3x} = 35.55$ mph

$\Delta v_{1x} = -\Delta v_{2y} \left(\frac{w_2}{w_1} \right)$
How about triangles?

Let’s look at the info we have from the EDR in the Lexus

• What do we have?
 – Impact Velocity, \((V_2)\), EDR Report
 – Post Impact Velocity, \((V_3)\), Calculated
 – Angle \(\beta\), \((\psi \square \phi)\)

• With three sides, we can get an opposite side of one of the angles, in this case, law of cosines.

\[
\Delta v = \sqrt{v_2^2 + v_4^2 - 2v_2v_4 \cos \beta}
\]
How about triangles?

Let’s look at the info we have from the EDR in the Lexus

- What do we have?
 - Impact Velocity, \(V_2 \), EDR Report
 - Post Impact Velocity, \(V_4 \), Calculated
 - Angle \(\beta \), \((\psi \varphi)\)
- With an opposite pair we can now use the law of sines:

\[
\frac{\sin a}{A} = \frac{\sin b}{B} = \frac{\sin c}{C}
\]
How about triangles?

Let’s look at the info we have from the EDR in the Lexus

• What do we have?
 – Impact Velocity, \((V_2) \), EDR Report
 – Post Impact Velocity, \((V_3) \), Calculated
 – Angle \(\beta \), \((\psi \ □ \ \phi) \)

• With an opposite pair we can now use the law of sines:

\[
\frac{\sin \alpha}{v_4} = \frac{\sin \beta}{\Delta v_2} = \frac{\sin RA}{v_2}
\]
How about triangles?

Let’s look at the info we have from the EDR in the Lexus

- What can we get for the Volkswagen?
 - Use v_3 from reconstruction
 - α_1 is opposite, so the angle must be the complimentary angle to α_2 ($\alpha_2 - 90^\circ = \alpha_1$)
 - Δv_1 can be calculated with:

$$\Delta v_1 = -\Delta v_2 \left(\frac{w_2}{w_1} \right)$$
How about triangles?

Let’s look at the info we have from the EDR in the Lexus

- Use law of sines:

\[
\frac{\sin \alpha}{v_3} = \frac{\sin \theta}{\Delta v_1} = \frac{\sin RA}{v_1}
\]
Non-collinear EDR
Case Study #3

Now let’s look at our crash:

• What do we have?
 – Impact Velocity, \((V_2)\), EDR Report
 – Post Impact Velocity, \((V_3)\), Calculated
 – Angle \(\beta\), \((\psi \square \phi)\)

• With three sides, we can get an opposite side of one of the angles, in this case, law of cosines.
Non-collinear EDR
Case Study #3

Now let’s look at our crash:

• What do we have?
 - $V_2 = 37.3$
 - $V_3 = 42.94$
 - $\beta = 68^\circ$, $(\psi \square \phi)$

\[\Delta v = \sqrt{v_2^2 + v_4^2 - 2v_2v_4 \cos \beta} \]
\[\Delta v = \sqrt{(37.3)^2 + (42.94)^2 - 2(37.3)(42.94)(\cos(68))} \]
\[\Delta v = \sqrt{2035.13} \]
\[\Delta v = 45.11 \text{mph} \]
Non-collinear EDR
Case Study #3

Now let’s look at our crash:

• What do we have?
 – $V_2 = 37.3$
 – $V_3 = 42.94$
 – $\beta = 68^\circ$, $(\psi \square \phi)$

• With an opposite pair we can now use the law of sines:

\[
\frac{\sin \alpha}{v_4} = \frac{\sin \beta}{\Delta v_2} = \frac{\sin RA}{v_2}
\]

\[
\frac{\sin 62^\circ}{42.94} = \frac{\sin 68^\circ}{45.11} = \frac{\sin 50^\circ}{37.3}
\]
Non-collinear EDR • Now address the Volkswagen triangle

Case Study #3

Now let’s look at our crash:

\[\frac{\sin 320^\circ}{\Delta \gamma_1} \cdot \frac{\sin 28^\circ}{42.94} = \frac{32^\circ}{120^\circ} \]
Non-collinear EDR
Case Study #3

Summary

<table>
<thead>
<tr>
<th>Momentum Analysis</th>
<th>Δv Derived</th>
<th>Triangle Derived</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min: 70 MPH</td>
<td>Min: 76 MPH</td>
<td>Min: 75 MPH</td>
</tr>
<tr>
<td>Target: 78.31 MPH</td>
<td>Target: 78.13 MPH</td>
<td>Target: 78.6 MPH</td>
</tr>
<tr>
<td>Max: 84 MPH</td>
<td>Max: 82 MPH</td>
<td>Max: 83 MPH</td>
</tr>
</tbody>
</table>

Crosschecks:
- Momentum analysis agrees with EDR reported precrash speed of the Lexus
Non-collinear EDR
Case Study #3

Momentum Analysis

Volkswagen
- \(w_1 = 3440 \text{ lbs} \)
- \(\alpha = 0 \)
- \(\theta = 32 \)
- \(v_3 = 41.93 \text{ mph} \)
- \(v_1 = 78.31 \text{ mph} \)

Lexus ES350
- \(w_2 = 3695 \text{ lbs} \)
- \(\psi = 90 \)
- \(\phi = 22 \)
- \(v_4 = 42.94 \text{ mph} \)
- \(v_2 = 36.77 \text{ mph} \)

Pre-Crash Data, -5 to 0 seconds (Ms)

<table>
<thead>
<tr>
<th>Time (sec)</th>
<th>-4.7</th>
<th>-3.7</th>
<th>-2.7</th>
<th>-1.7</th>
<th>-0.7</th>
<th>0 (TRG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle Speed (MPH [km/h])</td>
<td>36 [58]</td>
<td>37.3 [60]</td>
<td>37.3 [60]</td>
<td>37.3 [60]</td>
<td>37.3 [60]</td>
<td>37.3 [60]</td>
</tr>
<tr>
<td>Brake Switch</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>Accelerator Rate (V)</td>
<td>1.21</td>
<td>1.25</td>
<td>1.21</td>
<td>1.13</td>
<td>1.17</td>
<td>1.25</td>
</tr>
<tr>
<td>Engine RPM (RPM)</td>
<td>1,200</td>
<td>1,200</td>
<td>1,200</td>
<td>1,200</td>
<td>1,200</td>
<td>1,200</td>
</tr>
</tbody>
</table>
Non-collinear EDR
Case Study #3
Summary

Crosschecks:

- Momentum analysis agrees with EDR reported precrash speed of the Lexus
- EDR reported Lateral Δv agrees with momentum calculated Δv when adjusted for EMR

Momentum Analysis

<table>
<thead>
<tr>
<th></th>
<th>Δv Derived</th>
<th>Triangle Derived</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min:</td>
<td>70 MPH</td>
<td>Min: 75 MPH</td>
</tr>
<tr>
<td>Target:</td>
<td>78.31 MPH</td>
<td>Target: 78.6 MPH</td>
</tr>
<tr>
<td>Max:</td>
<td>84 MPH</td>
<td>Max: 83 MPH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Δv Derived</th>
<th>Triangle Derived</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min:</td>
<td>76 MPH</td>
<td>Min: 78.13 MPH</td>
</tr>
<tr>
<td>Target:</td>
<td>78.13 MPH</td>
<td>Target: 78.6 MPH</td>
</tr>
<tr>
<td>Max:</td>
<td>82 MPH</td>
<td>Max: 83 MPH</td>
</tr>
</tbody>
</table>
Non-collinear EDR
Case Study #3

✓ Lateral Δv Data
✓ Adjust for Effective Mass Ratio

\[
\Delta v_{\text{adjusted}} = \frac{\Delta v_{\text{edr}}}{\gamma}
\]

\[
\Delta v_{\text{adjusted}} = \frac{21.1 \text{ mph}}{0.4914}
\]

\[
\Delta v_{\text{adjusted}} = 42.93 \text{ mph}
\]

You must also consider edr error:

Low

\[
\Delta v_{\text{adjusted}} = \frac{\Delta v_{\text{edr}}}{\gamma}
\]

\[
\Delta v_{\text{adjusted}} = \frac{18.99 \text{ mph}}{0.4914}
\]

\[
\Delta v_{\text{adjusted}} = 38.64 \text{ mph}
\]

Calculated 39.8mph

Target

\[
\Delta v_{\text{adjusted}} = \frac{\Delta v_{\text{edr}}}{\gamma}
\]

\[
\Delta v_{\text{adjusted}} = \frac{21.1 \text{ mph}}{0.4914}
\]

\[
\Delta v_{\text{adjusted}} = 42.93 \text{ mph}
\]

High

\[
\Delta v_{\text{adjusted}} = \frac{\Delta v_{\text{edr}}}{\gamma}
\]

\[
\Delta v_{\text{adjusted}} = \frac{23.21 \text{ mph}}{0.4914}
\]

\[
\Delta v_{\text{adjusted}} = 47.23 \text{ mph}
\]
Non-collinear EDR
Case Study #3

Summary

<table>
<thead>
<tr>
<th></th>
<th>Δv Derived</th>
<th>Triangle Derived</th>
</tr>
</thead>
<tbody>
<tr>
<td>Momentum Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min:</td>
<td>76 MPH</td>
<td>75 MPH</td>
</tr>
<tr>
<td>Target:</td>
<td>78.13 MPH</td>
<td>78.6 MPH</td>
</tr>
<tr>
<td>Max:</td>
<td>82 MPH</td>
<td>83 MPH</td>
</tr>
</tbody>
</table>

Crosschecks:
- Momentum analysis agrees with EDR reported precrash speed of the Lexus
- EDR reported Lateral Δv agrees with momentum calculated Δv when adjusted for EMR

Momentum

<table>
<thead>
<tr>
<th></th>
<th>69</th>
<th>70</th>
<th>71</th>
<th>72</th>
<th>73</th>
<th>74</th>
<th>75</th>
<th>76</th>
<th>77</th>
<th>78</th>
<th>79</th>
<th>80</th>
<th>81</th>
<th>82</th>
<th>83</th>
<th>84</th>
<th>85</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Dv Derived

Triangle Derived